Integral criteria for transportation cost inequalities
نویسندگان
چکیده
منابع مشابه
New integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملMeasure Concentration, Transportation Cost, and Functional Inequalities
— In these lectures, we present a triple description of the concentration of measure phenomenon, geometric (through BrunnMinkoswki inequalities), measure-theoretic (through transportation cost inequalities) and functional (through logarithmic Sobolev inequalities), and investigate the relationships between these various viewpoints. Special emphasis is put on optimal mass transportation and the ...
متن کاملFree Transportation Cost Inequalities for Non-commutative Multi-variables
We prove the free analogue of the transportation cost inequality for tracial distributions of non-commutative self-adjoint (also unitary) multi-variables based on random matrix approximation procedure.
متن کاملSome Remarks on Transportation Cost and Related Inequalities
We discuss transportation cost inequalities for uniform measures on convex bodies, and connections with other geometric and functional inequalities. In particular, we show how transportation inequalities can be applied to the slicing problem, and give a new log-Sobolev-type inequality for bounded domains in Rn.
متن کاملIntegral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2006
ISSN: 1083-589X
DOI: 10.1214/ecp.v11-1198